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We consider the effect of spin-orbit coupling on the energy levels of a single-channel Josephson junction
below the superconducting gap. We investigate quantitatively the level splitting arising from the combined
effect of spin-orbit coupling and the time-reversal symmetry breaking by the phase difference between the
superconductors. Using the scattering matrix approach, we establish a simple connection between the quantum
mechanical time delay matrix and the effective Hamiltonian for the level splitting. As an application, we
calculate the distribution of level splittings for an ensemble of chaotic Josephson junctions. The distribution
falls off as a power law for large splittings, unlike the exponentially decaying splitting distribution given by the
Wigner surmise—which applies for normal chaotic quantum dots with spin-orbit coupling in the case that the
time-reversal symmetry breaking is due to a magnetic field.
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I. INTRODUCTION

A Josephson junction is a weak link between two super-
conductors with an adjustable phase difference �. The weak
link may be a tunnel barrier or a normal metal. Figure 1
shows, for example, a Josephson junction consisting of a
small piece of normal metal �a quantum dot�, connected to
the superconductors by a pair of narrow constrictions �quan-
tum point contacts�. The excitation spectrum below the su-
perconducting gap � consists of discrete energies, called An-
dreev levels. In zero magnetic field, the energy levels �n are
determined by the normal-state transmission eigenvalues Tn
if ��� /�dw, where �dw is the dwell time of an electron in the
normal region �before it is converted into a hole by Andreev
reflection at the superconductor�. The relationship is1

�n = ��1 − Tn sin2��/2� + O��2�dw/�� . �1�

Each level is twofold spin degenerate �Andreev doublet�.
Recently, the effect of spin-orbit coupling on Josephson

junctions became a subject of investigation.2–6 This is a
subtle effect for the following reason: On the one hand, in
the absence of magnetic fields, the normal-state transmission
eigenvalues Tn are Kramers degenerate because of the time-
reversal invariance of the normal system. On the other hand,
one would expect a breaking of the degeneracy of the An-
dreev doublets because the phase difference between the su-
perconducting contacts breaks the time-reversal symmetry of
the system. Still, to leading order in ��dw /�, the one-to-one
relationship �Eq. �1�� between �n and Tn ensures that the
Andreev levels remain degenerate for nonzero �. As was
pointed out by Chtchelkatchev and Nazarov,4 to see a split-
ting of the Andreev doublets as a result of the combined
effect of spin-rotation symmetry breaking by spin-orbit cou-
pling and time-reversal symmetry breaking by the phase dif-
ference, one has to go beyond the leading order in ��dw /�.
This tunable level splitting was exploited in a proposal of
Andreev qubits for quantum computation.4

In this work, we examine the splitting of the Andreev
doublets quantitatively by calculating the first order correc-

tion to the energy levels in the small parameter ��dw /�. We
concentrate our attention on the case when the quantum point
contacts support one propagating mode each. We give a
simple relation between the effective Hamiltonian for the
level splitting of Chtchelkatchev and Nazarov4 and the
Wigner-Smith time delay matrix,

Q = − iS†dS

d�
, �2�

where S is the scattering matrix of the normal system. As an
application, we calculate how the splittings are distributed
for an ensemble of systems where the two superconductors
are connected by a chaotic quantum dot, assuming that the
spin-orbit coupling in the dot is strong enough that the dot
Hamiltonian can be modeled as a member of the symplectic
ensemble of random matrix theory �RMT�.7,8 The present
study in the regime ��� /�dw complements earlier work9,10

in the opposite regime ��� /�dw. �The systems studied in
our paper correspond to symmetry class D in the classifica-
tion of Ref. 9.�

N
S

S

FIG. 1. Sketch of a quantum dot Josephson junction: the quan-
tum dot �N� is connected to two superconductors �S� by point con-
tacts. Spin-orbit coupling splits the energy levels of the system
when the superconductors have a nonzero phase difference.
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The paper is organized as follows. In Sec. II, we employ
the scattering matrix approach for calculating the first order
correction in ��dw /� to the Andreev levels and obtain the
effective Hamiltonian for the level splitting in terms of the
time delay matrix Q. For simplicity, we consider the single-
channel case in Sec. II and give the multichannel extension
in Appendix A. We apply our single-channel formula to a
calculation of the splitting distribution for an ensemble of
chaotic Josephson junctions in Sec. III. We conclude in Sec.
IV with a comparison of the splitting distribution of the An-
dreev doublets and the Wigner surmise of RMT.

II. SPLITTING HAMILTONIAN AND WIGNER-SMITH
MATRIX

For energies below the superconducting gap �, the Jo-
sephson junction supports bound states, with excitation ener-
gies given by the roots of the secular equation,1

Det�1 − 	���2rA
*Se���rASh���� = 0, �3�

where

	 = exp�− i arccos� �

�
�	, rA = �ei�/21 0

0 e−i�/21
� . �4�

The matrices Se��� and Sh��� are the scattering matrices of
the normal system for electrons and holes. They are related
as

Sh��� = TSe�− ��T −1, �5�

where T= i
2K is the time-reversal operator for spin-1 /2 par-
ticles. The matrix 
2 is the second Pauli matrix acting on the
spin degree of freedom and K is the operator of complex
conjugation. Relation �5� reflects the fact that in the normal
part the dynamics of the holes is governed by the
Hamiltonian11

Hh = − THeT −1, �6�

the negative of the time reversed electron Hamiltonian He.
The matrix rA describes the conversion of electrons into

holes by Andreev reflection at the interfaces with the super-
conductors. The phase shift 	��� is acquired upon Andreev
reflection because of the penetration of the wave function
into the superconductor.

We consider the case when the normal part is time-
reversal invariant, which imposes the self duality condition
S=
2ST
2 on the scattering matrix. �The superscript T refers
to matrix transposition.� For �=0, the solutions of Eq. �3�
have a twofold degeneracy known as Kramers degeneracy.
�Kramers degeneracy is a generalization of spin degeneracy
to cases when spin-rotation symmetry is broken but time-
reversal symmetry is preserved.�

The typical elements of Se��� change significantly if � is
changed on the scale of � /�dw; therefore, to leading order in
��dw /�, one can neglect the energy dependence of Se���, and
take it at the Fermi energy, Se���
Se�0�. Making use of the
self-duality of the scattering matrix and introducing the usual
block structure,

S = �r t�

t r�
� , �7�

the secular equation �Eq. �3�� can be simplified to1

Det��1 −
�2

�2� − t†t sin2��

2
�	 = 0. �8�

From this equation follows relation �1� between the energies
and the transmission eigenvalues.

The correction of order �2�dw /� comes from considering
the energy dependence of the scattering matrix to first order,
S���
S�0�+ �dS /d���. For simplicity, we restrict ourselves
here to the case of two single-channel point contacts. �The
extension to multichannel point contacts is given in Appen-
dix A.� For single-channel point contacts, the self-duality of
the scattering matrix implies

r = �12, r� = ��12, t� = 
2tT
2, t = �TU , �9�

where � and �� are complex numbers, 12 is the 2�2 unit
matrix, 1
T
0, and U is a 2�2 unitary matrix. Writing
the energy as �0+�� with

�0 = ��1 − T sin2��/2� , �10�

and keeping terms up to linear order in the small quantities
��=O��2�dw /�� and ��dw /�, one finds the eigenvalue equa-
tion,

Det��2

4
�
2Q11

T 
2 − Q11�sin���

−
�2

4
�Tr Q�

�0

�
�1 −

�0
2

�212 − ��	 = 0 �11�

for the energy correction ��. The matrix Q has the block
structure,

Q = �Q11 Q12

Q21 Q22
� , �12�

inherited from the transmission-reflection block structure
�Eq. �7�� of the scattering matrix.

The second term in the determinant �Eq. �11�� shifts both
eigenvalues by the same amount ��shift, while the first, mani-
festly traceless term is responsible for the splitting ±��split of
the doublet. We see that the splitting is determined by the
effective Hamiltonian

Heff = �
�dw�

�
� sin��� , �13�

with � a traceless Hermitian 2�2 matrix having matrix el-
ements of order unity. This is the result of Chtchelkatchev
and Nazarov.4 Our analysis gives an explicit relation16 be-
tween the matrix � and the time delay matrix Q,

� =
�

4�dw
�
2Q11

T 
2 − Q11� . �14�

This is the key relation that will allow us, in the next section,
to calculate the level splitting distribution from the known
properties of the time delay matrix in a chaotic system.
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We conclude this section with a symmetry consideration.
The shift ��shift is even in �, just like the zeroth order term
�0. In contrast, the splitting ��split is odd in �. This is in
accord with the symmetry of the Hamiltonian H that gives
the full excitation spectrum of the Josephson junction. Under
time reversal, in our case of a time-reversal invariant normal
part, it transforms as TH���T −1=H�−��; therefore, for an
eigenstate �, one has

H������� = �������� ,

H���T��− �� = ��− ��T��− �� . �15�

An Andreev doublet is therefore of the form ����� ,��−���.
The decomposition of ���� into even and odd parts in �
amounts to a decomposition of the doublet into a degenerate
even part and an odd splitting part. The resulting � depen-
dence of the doublet is shown schematically in Fig. 2.

III. SPLITTING DISTRIBUTION IN CHAOTIC
JOSEPHSON JUNCTIONS

As an application of our general result �Eq. �14��, we
calculate how the level splittings are distributed for an en-
semble of Josephson junctions where the normal part is a
chaotic quantum dot. We assume that the spin-orbit coupling
inside the dot is strong enough that the dot Hamiltonian can
be modeled as a member of the symplectic ensemble of
RMT, i.e., that the spin-orbit time �so is much shorter than
�dw. In this limit, the splitting distribution becomes indepen-
dent of �so. �In the opposite limit �so��dw, the splitting in-
creases linearly with 1 /�so.�

The splitting distribution can be obtained from the known
distribution of the scattering matrix,7 and of the dimension-
less symmetrized Wigner-Smith matrix,12

QE = − i
�

�dw
S−1/2�dS/d��S−1/2. �16�

The distributions of S and QE are independent,12 which
makes it advantageous to express Q in terms of S and QE,

Q =
�dw

�
S−1/2QES1/2. �17�

In the single-channel case, one has

QE = M1�1/�112 0

0 1/�212
�M1

†,

S = M2�ei�112 0

0 ei�212
�M2

†. �18�

The rates �n are distributed according to12

P��1,�2� � 
�1 − �2
4�1
4�2

4 exp�− 4��1 + �2�� . �19�

The distribution of the phases �n is7

P��1,�2� � 
ei�1 − ei�2
4. �20�

The matrices of eigenvectors M1 and M2 are members of
the group Sp�2� of 4�4 unitary symplectic matrices and are
uniformly distributed with respect to the Haar measure of the
group.7,12 The Haar measure is given as

d� � �
Det g
� jdxj , �21�

in terms of the metric tensor g, defined by

Tr�dMdM†� = �
ij

gijdxidxj . �22�

Here, �xi� is a set of independent variables parameterizing the
Sp�2� matrix M.

A convenient choice to parametrize Sp�2� is the decom-
position

M = � cos��� sin���W
− sin���W cos���

��U 0

0 V
� , �23�

where W, U, and V are SU�2� matrices, and �� �0,� /2�. It is
seen that the SU�2��SU�2� factor corresponding to the
block-diagonal matrix with U and V cancels from the spec-
tral decomposition �Eq. �18�� of QE and S. Using the Euler
angle parametrization for SU�2�,

U = �e−i��U+�U�/2 cos��U/2� − ei��U−�U�/2 sin��U/2�
ei��U−�U�/2 sin��U/2� ei��U+�U�/2 cos��U/2�

� ,

�U � �0,2��, �U � �0,4��, �U � �0,�� , �24�

and similarly for matrices V and W, one finds that the Haar
measure on Sp�2� corresponding to the chosen parametriza-
tion is

d��M� � sin3���cos3���d� �
j=U,V,W

sin�� j�d� jd� jd� j .

�25�

We define the maximal dimensionless splitting q of the
Andreev levels �reached at �=� /2� by the formula

��split = q�
��dw

�
sin��� . �26�

The distribution of q is given by

0

1

π0-π

ε/
∆

φ

FIG. 2. A schematic illustration of the splitting of the Andreev
doublet as a function of the phase difference � for a single-channel
Josephson junction with spin-orbit coupling. The energies are the
sum of a degenerate part �0+��shift that is even in � and a splitting
±��split that is odd in �, as explained in the text. The maximal
splitting is reached at �=� /2.
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P�q� =� d��S�d��QE���q − �− Det���� ,

d��QE� = d��M1�d�1d�2P��1,�2� ,

d��S� = d��M2�d�1d�2P��1,�2� . �27�

Equation �27� can be evaluated numerically. The resulting
distribution is shown in Fig. 4. The first two moments of q
are

�q� = 0.181, ��q2� − �q�2 = 0.152. �28�

The analysis of the asymptotic behavior of the integral in Eq.
�27� shows that near zero the splitting distribution behaves as

P�q� � q2 �q → 0� . �29�

For large splittings, we find

P�q� � q−6 �q → �� . �30�

In order to check our prediction �Eq. �27�� for the level
splitting distribution, we have numerically simulated the cha-
otic quantum dot Josephson junction of Fig. 1 using the spin
kicked rotator.13,14 The spin kicked rotator is a dynamical
model, from which one can extract scattering matrices char-
acteristic of chaotic cavities. These scattering matrices are
given by

S��� = P�e−i� − F�1 − PTP��−1FPT, �31�

where F is a 2M �2M matrix giving the stroboscopic time
evolution of the model and P is a 4�2M projection matrix
projecting onto the two single-channel point contacts �the
factors of 2 in the dimensions are because of the spin�. The
quasienergy � plays the role of the energy variable, measured
in units of � / t0 with t0 the stroboscopic time. For a more
detailed description of this numerical model, we refer the
reader to Ref. 14.

Scattering matrices generated through Eq. �31� are in-
serted into the secular Eq. �3�, and the roots are found by
varying the quasienergy. The dwell time in this model
is �dw=M /2 �again in units of t0�. We take M =100 and �
=2�10−4 �in units of � / t0�, so that ��dw /�=10−2�1.

Throughout the simulations, the strength of spin-orbit cou-
pling was characterized by �dw /�so=625. In Fig. 3, we show
the dependence of a single Andreev doublet in the dynamical
model on the superconducting phase difference �. The level
splitting is sinusoidal as predicted. By sampling about 105

different F, P, and �, we numerically obtain the distribution
P�q� shown in Fig. 4 together with the analytical result Eq.
�27�. The first two moments of the distribution obtained from
our simulation are

�q� = 0.181, ��q2� − �q�2 = 0.160, �32�

in a close agreement with the analytical predictions �Eq.
�28��.

IV. DISCUSSION

A. Summary

We have investigated the effect of spin-orbit coupling on
the subgap spectrum of single-channel Josephson junctions.
Using the scattering matrix approach and considering the
energy dependence of the scattering matrix to first order, we
obtained a simple relation �Eq. �14�� between the effective
Hamiltonian governing the level splitting and the quantum
mechanical time delay matrix Q=−iS†dS /d�. This relation
allowed us to find the splitting distribution for an ensemble
of chaotic Josephson junctions using the known properties of
Q. We verified our result numerically by simulating the cha-
otic Josephson junction using the spin kicked rotator, and we
found excellent agreement.

Experimentally, our results are relevant for quantum dots
with ballistic point contacts, such as studied in Ref. 17. Ef-
fects of the Coulomb blockade, which dominate when the
point contacts contain a tunnel barrier, should be relatively
unimportant in this case. The observation of weak antilocal-
ization, as reported in Ref. 17, is a signature of the regime
�so��dw considered in Sec. III. The splitting of the Andreev
levels can be seen in the Josephson current if a nonequilib-
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FIG. 3. The evolution of the Andreev levels of a single sample
of the spin kicked rotator as a function of the superconducting
phase difference �. The inset shows the sinusoidal dependence of
the level splitting on �.
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FIG. 4. Main plot: distribution of the maximal splitting of the
Andreev levels �reached at �=� /2� in units of �2�dw /�. The
smooth curve is the prediction of random matrix theory calculated
from Eq. �27�; the histogram is the result of a numerical simulation
using the spin kicked rotator. Inset: comparison of the Andreev
doublet splitting distribution �solid line� and the Wigner surmise
�dashed line�. For this comparison, the energies are rescaled such
that the mean of the distributions is unity.
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rium population of the levels is induced. �There is no effect
in equilibrium.� Lundin et al.18 have proposed a microwave
irradiation spectroscopy method that might be used to mea-
sure the splitting.

B. Comparison of the splitting distribution with the Wigner
surmise

In the inset of Fig. 4, we compare the splitting distribution
of the Andreev doublet with the Wigner surmise of RMT,8

PW�x� =
32

�2x2 exp�−
4x2

�
� . �33�

�For this comparison, the energy scale is set such that the
average splitting is unity.� The motivation behind this com-
parison is the fact that the Wigner surmise is also a splitting
distribution: as shown in Appendix B, it describes the distri-
bution of the splittings of Kramers doublets for normal cha-
otic quantum dots with spin-orbit coupling in the case that
the time-reversal symmetry is broken by a magnetic field.

At small splittings, both P and PW decay quadratically.
This quadratic decay is a generic feature of the splitting of a
Kramers degenerate level due to time-reversal symmetry
breaking. It follows from the fact that the splitting Hamil-
tonian is a 2�2 Hermitian traceless matrix without further
symmetries and from a power counting argument15 similar to
the one leading to the quadratic decay of PW.

While at small splittings the two distributions decay in the
same way, we find qualitative differences in the opposite
limit. At large splittings, P decays like a power law in con-
trast to the exponential decay of PW �cf. Eqs. �30� and �33��.

We attribute the deviation of P from the Wigner surmise
to the nonuniform way in which time-reversal symmetry is
broken: While the magnetic field in Appendix B acts uni-
formly throughout the normal quantum dot, the supercon-
ducting phase difference in the Josephson junction acts non-
uniformly at the point contacts. The nonuniformity is obvious
in the dynamical model, where the point contacts are intro-
duced at a specific position in phase space. In the RMT de-
scription, there is no notion of a phase space, but still the
coupling to the point contacts is introduced in a nonuniform
way by coupling to a small subset of matrix elements of the
random Hamiltonian. �This can be seen from the parametri-
zation of the scattering matrix in the Hamiltonian approach.7�
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APPENDIX A: SPLITTING HAMILTONIAN FOR
MULTICHANNEL JOSEPHSON JUNCTIONS

We generalize relation �14� between the splitting Hamil-
tonian and the time delay matrix to the case that each of the
two point contacts supports N /2 propagating modes. �The

single-channel case of Sec. II therefore corresponds to N=2.�
In the multichannel case, after the steps leading to Eq. �11�,
one arrives at the equation

Det�H0 +
�2

2
K − ��	 = 0, �A1�

where

H0 =
�2

2�n
�0��1 − ��n

�0�

�
�2

− t†t sin2��

2
�	 , �A2�

�n
�0� = ��1 − Tn sin2��/2� , �A3�

and K is a matrix with elements of order �dw /�. An eigen-
vector of t†t with eigenvalue Tn is also an eigenvector of H0
with zero eigenvalue. The first order correction to the zeroth
order energy �n

�0� is the first order perturbative correction to
this zero eigenvalue.

We introduce the N�2 matrices Wn and Wn� which con-
tain the two orthonormal eigenvectors of, respectively, t†t
and t�†t�, both corresponding to the eigenvalue Tn. In terms
of these matrices, we define the matrices q1n and q2n by

q1n = Wn
†Q11Wn, q2n = Wn�

†Q22Wn�. �A4�

We find that the shift of the Andreev doublet at �n
�0� is given

by

��n
shift = −

�2

4

�n
�0�

�
�1 − ��n

�0�/��2�Tr q1n + Tr q2n� , �A5�

while the splitting ��n
split is given by the two eigenvalues of

the traceless Hermitian matrix,

Heff
�n� =

�2

4
�
2q1n

T 
2 − q1n�sin��� . �A6�

APPENDIX B: SPLITTING DISTRIBUTION FOR NORMAL
CHAOTIC QUANTUM DOTS

We calculate the splitting distribution of a Kramers de-
generate level for normal chaotic quantum dots with spin-
orbit coupling, in the case that the time-reversal symmetry is
broken by a magnetic field.

The Hamiltonian of the system is decomposed into two
parts,

H = H0 + A, H0
† = H0, A† = A , �B1�

where H0 and A are 2M �2M matrices �the factor of 2 is due
to the spin�. They satisfy

TH0T −1 = H0, TAT −1 = − A . �B2�

The matrix H0 models the time-reversal invariant part of the
Hamiltonian and A is a time-reversal symmetry breaking
term.

The eigenvalues of H0 are doubly degenerate �Kramers
degeneracy�. Considering a doublet with energy E0, with cor-
responding eigenvectors u1, u2=Tu1,
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H0u1 = E0u1, H0u2 = E0u2, �B3�

and treating A as a perturbation, first order degenerate per-
turbation theory leads to the splitting of the Kramers doublet
by an amount ±��split. We find

��split = ��u1,Au1�2 + 
�u1,Au2�
2. �B4�

For chaotic billiards, the splitting distribution is given by8

P��� =� dU��U� � dAP�A���� − ��split� , �B5�

where U is the matrix of eigenvectors of H0, distributed ac-
cording to ��U�. �The form of ��U� is not needed for the
derivation.� The matrix A has distribution

P�A� � exp�− v2 Tr A2� , �B6�

where v is a positive number. Using the fact that P�A�dA is
invariant under a unitary transformation with the matrix of
eigenvectors of H0, one finds

P��� =� dadbdcP�a,b,c���� − �a2 + b2 + c2� , �B7�

where

P�a,b,c� � exp�− 2v2�a2 + b2 + c2�� . �B8�

After changing to polar coordinates, integral �B7� can be
evaluated straightforwardly, and after rescaling from � to x,
defined by �dxP�x�x=1, one arrives at the Wigner surmise
�Eq. �33��.
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